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We numerically investigate turbulent thermal convection driven by a horizontal
surface of constant heat flux and compare the results with those of constant
temperature. Below Ra ≈ 109, where Ra is the Rayleigh number, when the flow is
smooth and regular, the heat transport in the two cases is essentially the same. For
Ra > 109 the heat transport for imposed heat flux is smaller than that for constant
temperature, and is close to experimental data. We provide a simple dimensional
argument to indicate that the unsteady emission of thermal plumes renders typical
experimental conditions closer to the constant heat flux case.

1. Introduction
Numerical simulations of turbulent thermal convection have been performed

recently by Amati et al. (2005) over eight decades of the Rayleigh number 2 × 106 <

Ra < 2 × 1014. These simulations have allowed the determination of the non-
dimensional heat transport, or the Nusselt number, Nu, for thermal convection under
ideal conditions of constant Prandtl number, zero sidewall conduction, infinite thermal
conductivity and heat capacity of horizontal plates, and the unconditional validity of
the Boussinesq approximation. The results from the simulations differ from existing
experimental data (Niemela et al. 2000; Chavanne et al. 2001). These differences can
be as high as 20% (figure 1a). Although differences of that order, or even larger, exist
between experiments performed under nominally identical conditions, it is important
to understand whether there is a fundamental reason why the numerical simulations
and experiments disagree. Resolving this issue is our purpose here.

Since both numerical and experimental flows were confined within a cylindrical
cell of diameter to height ratio Γ = 1/2, neither the aspect ratio nor the shape of
the cell could play any role in explaining the difference. It is also thought that the
difference cannot be attributed to inadequate numerical resolution; some details of
grid resolution have already been discussed in Verzicco & Camussi (2003) and Amati
et al. (2005), and more systematic checks described and discussed in § 2.1 confirm this
conclusion.

There are, however, several possible candidates that could contribute to the observed
difference. In helium experiments, the Prandtl number did not remain constant as
the operating regime of Ra was extended by approaching the thermodynamic critical
point (see figure 1b). In the simulations, as already noted, the Prandtl number was
held strictly constant. This could be a major reason for the discrepancy. Indeed,
Stringano & Verzicco (2005) have recently shown that different combinations of Ra
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Figure 1. (a) Compensated Nusselt number versus Rayleigh number. Numerical simulations:
�, Amati et al. (2005). Experimental data: �, Chavanne et al. (2001); × , Niemela et al. (2000).
(b) The Ra–Pr data for the different flows shown in (a).

and Pr might correspond to different mean flow structures in the same cell (see also
Niemela & Sreenivasan 2003). Nevertheless, the simulations of Stringano & Verzicco
(2005) have shown that this structural feature does not alter the heat transport.
Experiments (Ahlers & Xu 2001; Roche et al. 2002; Xia, Lam & Xu 2002) show that
the Prandtl number does not affect the heat transport significantly, consistent with the
theoretical premise of some studies since Malkus (1954) and more recently Grossman
& Lohse (2001) that the Pr effects are negligible when Pr is somewhat larger than
unity (although the papers by Castaing et al. (1989) and Shraiman & Siggia (1990)
conclude that a dependence on the Prandtl number is possible). In addition, in the
helium experiments of figure 1, the Prandtl number remains essentially constant up
to Ra ≈ 1011 while the differences in Nu appear for lower Ra, thus allowing us to
conclude that the mismatch highlighted in figure 1 cannot be attributed to varying
Pr in the experiments.

Another cause of concern in experiments is the violation at high values of Ra of
the Boussinesq approximation. This feature can indeed alter the heat transport quite
significantly (Niemela & Sreenivasan 2003; Ahlers et al. 2007), but the alteration
becomes important in experiments only towards very high Ra. On the other hand, as
shown in figure 1, the differences between numerical simulations and experiments are
evident even when non-Boussinesq effects in experiments are insignificant. We thus
rule out non-Boussinesq effects as the proper explanation for the differences under
present consideration.

In experiments, because of the necessity to join highly conducting horizontal plates
with poorly conducting sidewalls, there is a certain amount of heat leak from the
sidewall to the fluid near the hot plate and a reverse heat flow from the fluid to the
sidewall near the cold plate. This feature of sidewall conduction is too complex to
model precisely but several models exist (Ahlers 2001; Roche et al. 2001; Verzicco
2002; Niemela & Sreenivasan 2003). No such corrections can account for the observed
differences. For example, Niemela & Sreenivasan (2006) show that the data with and
without corrections are not different enough to explain the present discrepancy. In
any case, this correction is asymptotically negligible for increasing Ra.

The final issue is the finite conductivity of the horizontal plates. The notion that
even the very large thermal conductivity of the plates could interfere with the heat
transport was initially put forward by Chaumat, Castaing & Chilla (2002), later
extended by Chillá et al. (2004). Verzicco (2004) was able to quantify this effect
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Figure 2. Setups with different temperature boundary conditions: (a) plates with constant
temperature on dry surfaces, and (b) lower plate with constant heat flux.

and find a correction numerically. An experimental confirmation of this model was
presented by Brown et al. (2005).

Verzicco’s (2004) correction considered the limit in which the plate thickness goes to
zero (or the so-called Biot number vanishes), thus ensuring, for the case of steady heat
transport, that the plate remains at uniform temperature quite accurately. When the
resulting plate correction is applied to measurements, the Nusselt number obtained
corresponds to the absence of the thermal resistance of the plates. In figure 2, this
corresponds to e −→ 0. This limit does not guarantee that the temperature of the
plates – uniform though it might be in steady convection – will also remain constant
at all times if the convection is unsteady. The existence of plumes indeed makes
turbulent convection unsteady over a range of time and spatial scales. To ensure a
constant and uniform plate temperature for every flow condition (i.e. every Rayleigh
number) the plate should possess infinite thermal conductivity and heat capacity.
Since every plate falls short of these ideal properties, the temperature uniformity can
be realized only to within some degree of approximation since the surface temperature
in experiments (figure 2b) is constant only on the average but not locally (in time
or space). One should thus expect departures from the ideal case of numerical
simulations (figure 2a). We shall argue that the departures are manifested through
effects on plume generation.

As an aside, we should note that the effect of imperfectly conducting walls has been
the subject of investigation near the onset of convection (e.g. Sparrow, Goldstein &
Jonsson 1964; Busse & Riahi 1980), but we are unaware of comparable studies in the
fully turbulent regime at high Rayleigh numbers.

In § 2, we describe numerical simulations in which the temperature boundary
conditions of the lower plate are set for constant heat flux instead of constant
temperature. The comparison in § 3 of the present results with those of previous
simulations with constant-temperature boundary conditions (Verzicco & Camussi
2003; Verzicco 2003) shows that the differences between the two cases can account
for most of the mismatch highlighted in figure 1(a). The simple dimensional argument
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of § 4 is intended to explain the altered plume dynamics and the difference in the
computed Nusselt numbers. Section 5 provides some concluding remarks.

2. The problem and the numerical method
The buoyancy-driven flow developing in a cylindrical cell of aspect ratio 1/2 is

analysed via direct numerical simulations of the Navier–Stokes equations with the
Boussinesq approximation. The problem is similar to that addressed in Verzicco &
Camussi (2003) and Amati et al. (2005), who analysed the configuration of figure 2(a)
with e =0. The principal difference here is that the temperature boundary condition
at the bottom plate is one of constant gradient rather than constant temperature. The
configuration is shown in figure 2(b) with e =0, all surfaces being no-slip.

It must be stressed that the choice of constant heat flux was made only for
the bottom plate because, in a real setup, the bottom plate is in contact with
a heater while the top plate is usually connected to a thermostatic bath. Thus, the
condition of constant heat flux may apply mostly to the lower plate. The thermocouple
measurements of Cioni, Ciliberto & Sommeria (1997), made inside the plates, indeed
found that the bottom plate approximated a constant-heat-flux surface while the
top plate corresponded to constant-temperature boundary. The measurements of
Cioni et al. were for mercury with copper plates, but similar circumstances prevail
for other fluids at higher Ra. It is worth noting, however, that the condition of
constant temperature holds only approximately also for the upper plate since a
recirculating refrigerating fluid, for example, will have a temporally and spatially
varying temperature within the top plate.

If q = ∂θ/∂z|w is the wall temperature gradient assigned at the bottom plate and h

the height of the cell, temperature and velocity scales can be written, respectively, as

qh and
√

gαqh2. The non-dimensional governing equations are then

Dv

Dt
= −∇p + Θ ẑ +

(
Pr

Raq

)1/2

∇2v, ∇ · v = 0, (2.1)

DΘ

Dt
=

1

(PrRaq)1/2
∇2Θ, (2.2)

with ẑ as the unit vector pointing opposite to gravity, v the velocity vector, p the
pressure and Θ the non-dimensional temperature; Raq = gαqh4/(νk) and Pr= ν/k

are the Rayleigh and Prandtl numbers, respectively, with g denoting the acceleration
due to gravity, α the isobaric thermal expansion coefficient, ν the kinematic viscosity
and k the thermal diffusivity of the fluid.

The equations written in cylindrical coordinates are discretized on a staggered
mesh by central second-order-accurate finite-difference approximations as described
in Verzicco & Orlandi (1996). The resulting discretized system is solved by a fractional-
step procedure with the elliptic equation inverted using trigonometric expansions in
the azimuthal direction and the FISHPACK package (Swartzrauber 1974) for the
other two directions. The time advancement of the solution is obtained by a hybrid
low-storage third-order Runge–Kutta scheme. The numerical method is the same as
that used by Verzicco & Camussi (2003) and Verzicco & Orlandi (1996), where further
details and validation checks can be found.

Six main cases were run at Rayleigh numbers Raq =2 × 107, 2 × 108, 2 × 109,
2 × 1010, 2 × 1011 and 2.8 × 1013, all with Pr= 0.7. The numerical grids were 65 × 49 ×
193 for 2 × 107 � Raq � 2 × 109 and 97 × 49 × 193, 129 × 97 × 385 and 193 × 129 × 513
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for the other three cases in the azimuthal, radial and vertical directions. The time
integration of the equations was performed by an adaptive time step resulting in about
400 time steps for each large-eddy-turnover time at Raq = 2 × 107, and in 1400 time
steps at Raq = 2.8 × 1013. More details on the numerical technique and computational
parameters can be found in Verzicco & Camussi (2003).

Note that, for the present problem, the temperature at the lower horizontal plate
is constant only on the average and fluctuates in both time and space. If θh is the
mean lower plate temperature (for the upper plate it is assigned to be θc ≡ θc = 0)
the temperature difference of the setup is ∆ = θh − θc and the Nusselt number is
simply Nu= qh/∆. In order to compare the present results with those for constant
temperature, we relate Raq with the usual Rayleigh number Ra = gα∆h3/(νk) through
Ra =Raq∆/(qh) = Raq/Nu, and scale velocity and temperature respectively with√

gα∆h and ∆, thus yielding u = v
√

Nu and θ = ΘNu. This will allow the discussion
of the flow dynamics for constant temperature and constant heat flux within a single
framework.

2.1. Grid refinement checks

In Verzicco & Camussi (2003) and Amati et al. (2005), each of the flows at Ra = 2 × 107

and Ra = 2 × 1011 were computed on two different grids in order to define the
minimum resolution requirements for scaling up the simulations at higher Ra. Here,
we perform the refinement check more systematically by selecting one representative
flow condition and computing it on different meshes and time steps in order to
quantify the effects of numerical resolution on the Nusselt number. For this purpose
the flow at Ra = 2 × 1010 is a sensible choice on several counts. First, the Rayleigh
number is already high enough for the Nusselt number of numerical simulations and
experiments to be appreciably different, yet the mesh used in Verzicco & Camussi
(2003) is coarse enough to allow further grid refinement in each direction. Further, in
Amati et al. (2005), the flow at Ra = 2 × 1010 was the least resolved in space, so we
may expect the resolution effects to be the largest.

The flow at Ra =2 × 1010, which Verzicco & Camussi (2003) simulated on a grid
129 × 97 × 385, in the azimuthal, radial and vertical directions, respectively, is recom-
puted now on grids 65 × 49 × 193, 97 × 65 × 257, 193 × 129 × 513, 257 × 193 × 771 and
385 × 257 × 1025. For grids 193 × 129 × 513 and 257 × 193 × 771, the CFL stability
parameter, which was set equal to 1.5 in the original simulation, has been halved. For
the grid 385 × 257 × 1025, the CFL has been further reduced to 0.25 for an even better
refinement of the time step. The mesh of Verzicco & Camussi (2003) was 2.4 times
larger than the Kolmogorov scale (η) in the bulk and had 6 nodes within the thermal
boundary layer of thickness δθ with the first node at δθ/10. The two finest grids of the
present study, 257 × 193 × 771 and 385 × 257 × 1025, correspond to 1.2η and 0.8η in
the bulk, with 12 and 33 nodes within δθ and the first point at δθ/18 and δθ/100. The
results in figure 3 show that, except for the coarsest case, all the computed Nusselt
numbers are within the error bar of the original computation thus confirming that
insufficient numerical resolution is not the cause of differences between simulations
and experiments.

Furthermore, it should be stressed that all the simulations of Amati et al. (2005)
for 2 × 1011 � Ra � 2 × 1014 had a resolution comparable to the refined cases of the
present analysis. Therefore, for those simulations as well, all resolution effects should
be expected to be within the error bars of the data of figure 3(a).

As a final check of the numerical code, we have repeated the computations of
Shishkina & Wagner (2006) who used a grid of 193 × 513 × 111 nodes in a Γ =10
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Figure 3. (a) Compensated Nusselt number versus Rayleigh number. Experimental data:
�, Chavanne et al. (2001); × , Niemela et al. (2000). Numerical simulations: �, Amati
et al. (2005); �, present grid refinement data reported in detail in (b). (b) Nusselt number
versus the inverse of the mean grid spacing at Ra= 2 × 1010. The symbol � is the value
reported in (a) and the lines are the upper and lower bounds of the error bar.
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Figure 4. Compensated Nusselt number versus Rayleigh number. Numerical simulations:
�, Amati et al. (2005); �, present results with imposed heat flux on the lower horizontal
plate. Experimental data: �, Chavanne et al. (2001); × , Niemela et al. (2000); ∗, Nikolaenko
et al. (2005). Data for Γ = 0.427 and Γ = 0.667, both close to 1/2, are taken from Nikolaenko
et al. All other data are for Γ = 1/2.

cylindrical cell at Pr= 0.7 to simulate flows at Ra = 105, 106 and 107. For these
Rayleigh numbers, their Nusselt numbers of 4.1, 8.2 and 16.4 compare well with our
values 4.23 ± 0.18, 8.37 ± 0.22, 17.1 ± 0.43.

3. Results
An important quantitative result is the behaviour of the Nusselt number as function

of the Rayleigh number for conditions of constant heat flux and constant temperature
(see figure 4). The Nusselt numbers in the two cases are essentially the same up to
about Ra ≈ 109 but differ beyond. We also plot experimental data from Niemela
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Figure 5. Results for the constant-heat-flux condition at the lower plate, Raq = 2 × 1011,

(Ra= 2.22 × 109) Pr = 0.7. (a) Instantaneous temperature distribution at the lower plate: thick
, θ = θw; blue, magenta and red, θ > θw; yellow, green and cyan, θ < θw . (b) Perspective

view of the instantaneous temperature isosurface (θ = 0.8θw) close to the lower plate.
(c) Contour lines of vertical velocity at a distance of ≈ 0.015h from the lower plate; green and

, positive velocities; red and , negative velocities.
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Figure 6. Results for constant-temperature boundary condition, Ra= 2 × 109, Pr = 0.7.
(a) instantaneous temperature gradient distribution at the lower plate: thick ,
∂θ/∂z|w = Nu; blue, red and yellow, ∂θ/∂z|w >Nu; green and cyan, ∂θ/∂z|w <Nu.
(b) Perspective view of instantaneous temperature isosurface (θ = 0.8θw) close to the lower
plate. (c) Contour lines of vertical velocity at a distance of ≈ 0.015h from the lower plate;
green and , positive velocities; red and , negative velocities.

et al. (2000), Chavanne et al. (2001) and Nikolaenko et al. (2005). All the data are
for closely similar geometries. They are close to the numerical data for the case
of constant heat flux. An immediate suggestion from this is that the experimental
boundary condition at the lower wall may be closer to the constant-heat-flux condition
than to the constant-temperature condition. One should, however, be cautious. For
instance, the constant-heat-flux boundary condition is applied directly to the fluid in
simulations (e = 0 in figure 2b) while, in an experimental setup, a thick metal plate
is interposed between the heater and the fluid (e �= 0). This may account for the
slightly larger Nu in numerical simulations, which cannot be ascribed to statistical
uncertainty.

In order to understand the result, it is helpful to examine the flow dynamics
associated with the two temperature boundary conditions. Figures 5 and 6 show
instantaneous snapshots of the two flows close to the lower plate for the same Ra and
Pr. In particular, for constant heat flux we show the wall temperature, a temperature
isosurface and contours of vertical velocity (in figures 5a, 5b and 5c, respectively). The
‘crests’ in figure 5(b) show the formation of line plumes as confirmed by the positive
(upward) vertical velocity at the same position. The wall temperature below each
plume exceeds the average since the fluid, which is drained into the plumes from the
sides, is essentially stagnant. This picture is reinforced by the observation that the wall
temperature on both sides of the plumes is below the average and the vertical velocity
is negative. The same behaviour for the surface temperature was reported by Hunt
et al. (2003) for constant heat flux. On the other hand, when the wall temperature
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Figure 7. Comparison of temperature fluctuations at the wall and in the bulk as functions
of the Rayleigh number for the constant-temperature (�) case and for the constant-heat-flux
case. (�): (a) wall temperature r.m.s. (note that for the constant-heat-flux case it is evaluated
at the wall while for the constant-temperature case it is taken to be the peak r.m.s. within the
thermal boundary layer); (b) bulk temperature r.m.s.

is held constant, its gradient (figure 6a) can adjust to the demands of the local flow
dynamics. Accordingly, on the sides of the plumes, the heat flux tends to rise above
the average and the vertical velocity is again negative. The fundamental difference
between the two flows is illustrated by the temperature isosurfaces (corresponding to
80% of the wall temperature). In fact, the flow in figure 6 can accommodate any
heat flux by making the thermal boundary layer thinner without limit, while, in the
flow in figure 5, a heat flux requirement that exceeds the boundary condition is met
only by decreasing the wall temperature. This causes the plumes to be colder and less
buoyant, so they carry less heat than in the constant-temperature case.

A quantitative view of the phenomena just described is given in figure 7(a, b)
showing the wall and bulk temperature fluctuations for the two flows. The peak root-
mean-square (r.m.s.) temperature within the thermal boundary layer is approximately
constant for all Ra when the plate temperature is constant while, for the imposed
heat flux case, the wall temperature fluctuations tend to increase with Ra and are
larger than for constant temperature (figure 6a). The increased fluctuation level arises
because, when the heat flux is prescribed, the temperature can fluctuate above and
below the mean value of the plate θc. On the other hand, as shown in figure 6(b),
the temperature fluctuations in the bulk are comparable in the two cases. This is so
because only the hotter fluctuations at the bottom wall can produce thermal plumes,
these being the source of fluctuations in the bulk. This finding can be interpreted
with the help of figure 8, which shows that the velocity fluctuations in the bulk are
smaller for constant heat flux than for constant temperature. The present findings on
temperature fluctuations near the lower plate and in the bulk agree fully with Hunt
et al. (2003) (see their figure 6), who found the fluctuation level to increase with Ra at
the wall and to remain constant in the bulk. This suggests that, despite the large wall
temperature fluctuations, only a part of them is due to plumes that are generally less
intense for constant heat flux than for constant temperature. Since the power going
into fluctuations is an increasing fraction of the thermal power input as the Rayleigh
number increases (Niemela & Sreenivasan 2002), we should expect the differences
between constant-heat-flux and constant-temperature flows to increase with Ra.

In the next section, we will show that if the boundary can provide the flow with
any amount of heat flux, the heat carried by each plume is an increasing function of
Ra while its temperature is a constant fraction of the temperature difference ∆. On
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Figure 9. Averaged profiles of (a) temperature and (b) vertical velocity along the axis of the
cell as functions of the Rayleigh number. , Raq = 2 × 108; , Raq = 2 × 109; ,

Raq = 2 × 1011: , Raq = 2.8 × 1013.

the other hand, if the heat flux is fixed, the plume temperature is a fraction of ∆ that
decreases with Ra. Figure 4 suggests, roughly, that the heat transport is affected when
a threshold Ra is exceeded. Apart from these differences close to the lower plate, the
flow with imposed heat flux is quite similar to that with constant temperature. The
mean profiles along the axis of temperature and vertical velocity, shown in figure 9,
are very close to those of Verzicco & Camussi (2003) (see their figure 13). So also
are the vertical profiles of temperature r.m.s., with the obvious difference occurring
near the lower and upper plates (figure 10). It is worth mentioning that Verzicco &
Camussi (2003) estimated the thermal boundary layer thickness (δθ ) from the position
of the r.m.s. temperature peak as in the upper inset of figure 10. For the present
problem this is possible only at the upper plate since for the lower boundary the peak
of temperature r.m.s. is right at the wall (figure 10). We have therefore computed δθ

for the lower wall following the procedure of Belmonte, Tilgner & Libchaber (1994),
who linearly extrapolated the temperature profile from the wall until it reached the
average temperature. The results for the two plates, reported in figure 11, show a
similar behaviour.
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Figure 11. Thermal boundary layer thickness as a function of the Rayleigh number for
the constant heat flux case: lower plate (�) and upper plate (�) for δθ computed from the
linear extrapolation of the mean temperature profile. �, δθ at the upper plate computed by the
position of the peak in the r.m.s. value of the temperature fluctuation. The line follows the −1/3
power low.

4. A simple dimensional argument
We consider a simple dimensional argument in order to supplement the above

discussion. In the case of constant temperature, the local wall temperature gradient
∂θ/∂z|w changes with space and time, and the heat transport through a surface
element S is Qw = λ〈∂θ/∂z|w〉S, where λ is the thermal conductivity of the fluid and
the angular brackets imply averaging of the gradient over time (also over space in view
of homogeneity). Assume that a plume, generated in the area element S, leaves the
plate with a vertical velocity uz. If S is also the cross-section of the ascending plume,
its heat flux can be estimated as Qp ≈ ρCpθpuzS, where ρ and Cp are the density and
the specific heat at constant pressure, respectively, and θp = ∆ the temperature of the
plume if it can be considered as a ‘piece’ of detached boundary layer (figure 12). This
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Figure 12. Schematic of a portion of thermal plume detaching from the lower plate.
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Figure 13. Perspective views of instantaneous temperature isosurfaces (θ = 0.8) close to
the lower plate. Simulation with constant temperature at the plate, Ra=2 × 108, Pr= 0.7:
(a) t = 185, (b) t = 190 and (c) t = 195.

estimate for Qp assumes that the plume receives the heat from a plate area S ′ which
is the same as its cross-section S. In general, this will not be true since the heat is
transported in and out of the plume also from the sides thus making S ′ bigger than
S. It is reasonable to conjecture, however, that S ′ and S are proportional through a
factor which, while different from unity, can be neglected in discussions of the scaling
behaviour. According to flow visualizations and models (Theerthan & Arakeri 1998;
Grossmann & Lohse 2004; Puthenveettil & Arakeri 2005) a typical plume is a two-
dimensional sheet-like structure of thickness comparable to the thermal boundary
layer δθ (line plume), which initially extends in the vertical direction, eventually to
be bent by the mean wind (figure 13). Castaing et al. (1989) suggest that a plume
accelerates up to a velocity for which buoyancy and viscous drag are in balance; for
a two-dimensional sheet with lateral dimension comparable to the horizontal size of
the cell, this vertical velocity can be estimated as uz ≈ gα∆δθhΓ/ν, Γ being the aspect
ratio of the cell.

If, as suggested by Castaing et al. (1989), a plume attains a velocity uz such that
buoyancy and drag are in equilibrium, we can write ρu2

zS
′CD/2 = ρgαθpV where V

and S ′ are, respectively, the volume and wet surface of the plume while θp is the plume
temperature; we have θp = ∆ by considering a plume as a piece of detached thermal
boundary layer. If the plume is mushroom-like, S ′ ∼ δθH and V ∼ δ2

θH while for a
line plume S ′ ∼ LH and V ∼ δθLH ; here H ∼ h is a vertical dimension of the plume
and L a lateral coherence length. Finally, we assume that the plume is slow enough
to consider the drag coefficient CD ∼ 1/Re thus obtaining for the mushroom-like and
line plumes uz ≈ gα∆δ2

θ /ν and uz ≈ gα∆δθhΓ/ν (corresponding to Re= uzδθ/ν and
Re = uzL/ν, after having neglected numerical coefficients of order one). The above
derivation depends on the reference length chosen for the Reynolds number. In the
Stokes regime we have assumed that this length must be representative of the plume
‘wet’ surface which results in a length L for the line plume and δθ for the mushroom
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like plume. In contrast, if only the length δθ is used the rising velocity is identical in
both cases and equal to that of Castaing et al. (1989). We wish to stress that the factor
Γ in the velocity for the line plume arises from the assumption that the structure
remains coherent over the whole width of the cell. This is realistic for configurations
with Γ � 1 but unlikely for large aspect ratios; therefore, it should be intended as
limited by unity. The other questionable hypothesis is CD ∼ 1/Re since it implies very
slow and purely viscous dynamics; for this reason, later in this section 4, the same
arguments have been applied when considering that the plume attains the free-fall
velocity or that the plume is driven by the convective heat flux.

With the above velocity estimate uz ≈ gα∆δθhΓ/ν and the definition δθ ≈ h/(2Nu)
the ratio between plume flux Qp and the local wall flux Qw is

Qp

Qw

≈ ρCp∆gα∆δθhΓ

λ〈∂θ/∂z|w〉ν ∼ Γ Ra

Nu2
. (4.1)

Once again we note that, while the neglected numerical factor in the last step of
(4.1) might be different from unity, the scaling arguments are not altered and the
conclusions remain valid.

The relation (4.1) shows that if Nu ∼ Raβ , with β < 1/2, the ratio between the heat
drained by a plume and the average heat provided by the plate grows monotonically
with Ra, suggesting that the boundary must cope with increasingly large localized heat
flux spikes if the growth of the thermal plume is not to be saturated by an insufficient
heat flux. It is important to note, however, that (4.1) relies on the assumption that
a plume forms with enough heat (flux) to detach from the bottom plate at its
temperature; this can only happen at every Rayleigh number for a boundary that has
infinite heat capacity and maintains its temperature regardless of the required heat.
This ideal system can be realized in a numerical simulation when the temperature
is imposed as a boundary condition and the wall temperature gradient can attain
any value demanded by the local flow dynamics (Amati et al. 2005). In a laboratory
setup, on the other hand, the combination of a distributed heater, and a metal plate
with good thermal conductivity (usually copper) acting as a ‘heat reservoir’, aims to
approximate the constant-temperature condition. The plate has finite capacity and
thermal conductivity, which makes the local wall temperature drop below the average
if the required heat flux is too large for the thermal properties of the boundary. This
suggests that in a real experimental apparatus the temperature boundary condition
at the interface between the fluid and the plate can be a combination of constant
temperature and constant heat flux, and their relative strengths depends on flow
conditions.

For the case of fixed heat flux, since the line plume leaves the plate with an
imposed heat flux, the ratio Qp/Qw remains constant (order one) and the previous
relations can be used to determine the mean temperature of the plume, θp . An energy
balance between the heat provided by the plate and that carried by the plume gives
uzθp = λ〈∂θ/∂z|w〉/(ρCp), which, with the velocity uz ≈ gαθpδθhΓ/ν, yields

θp ∼ ∆
Nu

Ra1/2Γ 1/2
. (4.2)

Once again, the correlation Nu ∼ Raβ with β < 1/2 indicates that, as the Rayleigh
number increases, the ratio θp/∆ decreases and produces colder plumes.

Note that the same argument essentially holds if we assume that a plume can
accelerate up to a velocity comparable to the free-fall velocity (in reality, only a
fraction of it is attained by the flow). In this case we have uz ≈ (gα∆h)1/2; with the
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Figure 14. The r.m.s. temperature fluctuations in the bulk, normalized by the value at the
wall, as a function of the Rayleigh number for constant temperature (�) and constant heat
flux (�). For the former, the fluctuations are the peak value within the thermal boundary
layer; for the latter, they are computed at the wall itself. Slopes of −1/8 and −1/6 are shown
for comparison.

relations used for a plate at constant temperature one obtains Qp/Qw ∼ (Ra Pr)1/2/

Nu. Once again, if Nu ∼ Raβ with β < 1/2, as in (4.1), the ratio between the heat
drained by a plume and the average heat provided by the plate grows monotonically
with the Rayleigh number. On the other hand, if the plate can only provide a constant
heat flux so that Qp/Qw = O(1), we can compute the mean plume temperature, with

the free-fall velocity as above, to be θp ∼ ∆[Nu2/Ra Pr]1/3. This expression should
be compared with (4.2); further, given the Nu dependence on Ra, the ratio θp/∆

decreases for increasing Ra, thus giving colder plumes.
The same conclusions are achieved also if we follow Hunt et al. (2003) who

estimated the plume velocity as uz ≈ (gαFh)1/3, F being the convective heat
flux, F = 〈u′

zθ
′〉. Since, for Nu  1, we have Nu ≈ Fh/(k∆) we obtain Qp/Qw ∼

[Ra Pr/Nu2]1/3; with Nu ∼ Raβ and β < 1/2, this ratio grows monotonically with
Ra. For a constant heat flux with Qp/Qw ≈ 1, the mean plume temperature becomes

θp ∼ ∆[Nu2/Ra Pr]1/3, which, given the observed dependence of Nu on Ra, gives a
decreasing θp/∆ for increasing Ra.

We wish to stress that relation (4.2) concerns only the plume temperature. It does
not necessarily imply that the r.m.s. temperature at the wall (θ ′

w) decreases with Ra
as in figure 9(a). In fact, for increasing Rayleigh numbers, the flow becomes more
turbulent and the mean wind more unsteady; since the wall temperature is not fixed,
θ ′
w tends to increase and remain larger than the peak r.m.s. of the imposed-temperature

case. As already mentioned, despite the increased wall temperature fluctuations, the
temperature r.m.s. in the bulk (θ ′

b) is very similar to the constant-temperature case,
perhaps even showing slightly smaller values. If we argue that, among all the wall
temperature fluctuations, only those that are positively correlated with the vertical
velocity are likely to reach the bulk, we can think of such events as indicating the
plumes; thus, by examining the quantity θ ′

b/θ
′
w , one can track (in a statistical sense)

how much of the produced temperature fluctuation has reached the bulk through
plume dynamics. The results for constant temperature and constant heat flux are
given in figure 14. They show that, consistent with (4.2), a more rapid decrease
with Ra occurs for the constant-heat-flux case while the fluctuations in the constant
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temperature conditions follow the −1/8 (or −1/7) power law, as already observed
in experiments (Wu 1991; Niemela et al. 2000). Although it might be coincidental,
the scenario just conjectured is reinforced by the observation that, if we insert the
correlation Nu ∼ Ra1/3 in (4.2), we obtain θp ∼ ∆Ra−1/6 – this being the slope observed
in figure 14.

5. Concluding remarks
In the present study we have considered the differences produced in thermal

convection for the cases of constant-heat-flux boundary and constant-temperature
boundary. The results indicate that for Ra < 109 the two cases are comparable while,
for higher Rayleigh numbers, the constant-heat-flux case yields lower Nusselt number.
The reason appears to be that the growth of the thermal plumes with constant heat
flux is inhibited by the decrease of the wall temperature. This reduction is comparable
to the amount by which experimental data fall below the simulations. Even so, it does
not necessarily follow that the laboratory setups have a constant-heat-flux boundary
condition at the lower plate. In fact, in a real setup, a thick metal plate with good
thermal conductivity is interposed between the heater and the fluid, which tends to
homogenize the temperature at the plate-fluid interface and acts as a heat reservoir. It
is worth repeating that, in order to ensure a constant and uniform plate temperature
for every flow condition (every Rayleigh number), the plate should have infinite
thermal conductivity and heat capacity. In practice, every plate has finite thermal
properties, and the temperature uniformity can be realized only with some degree of
approximation.

A detailed analysis of the coupling between flow conditions and plate thermal
properties has been performed by Chillá et al. (2004) who have shown that any plate
produces temperature fluctuations that interfere with the heat transport for large
enough Ra. A good plate should have a thermal conductivity (λp) much larger than
that of the fluid so that the temperature distribution on the plate remains uniform.
However, the effective thermal conductivity of the fluid λf Nu could eventually become
comparable to λp for very high Ra. At this condition the temperature uniformity can
still be maintained if the specific heat capacity of the plate (ρwCw) is much larger
than that of the fluid (ρCp). According to Chillá et al. (2005), the specific heat
capacities govern the temperature fluctuations through the ratio [ρwCw/(ρCp)]0.5.
For the experiments of Niemela et al. (2001) and Chavanne et al. (2001), which
used cryogenic helium and oxygen-free copper, [ρwCw/(ρCp)]0.5 � 0.5. This quantity
for Nikolaenko et al. (2005), who used water and copper, is 0.9. Since the two
values are not farapart, it is not surprising that the results in figure 4 are similar.
The experiments with pressurized gasses are better by an order of magnitude.
Fleischer & Goldstein (2002) used argon and nitrogen and for their conditions
5.9 � [ρwCw/(ρCp)]0.5 � 7. For pressurized SF6 in the experiments by Ashkenazi &
Steinberg (1999) 2.2 � [ρwCw/(ρCp)]0.5 � 5.4; in these studies there is the additional
complication of the Prandtl number and cell aspect ratio variation – even though the
Nusselt number measurements are in rough agreement with results from water and
cryogenic-gas experiments.

A good way to confirm the findings of the present paper is to conduct experiments
at high Rayleigh numbers using an ambient temperature gas and copper plates; for
example, for air and copper, [ρwCw/(ρCp)]0.5 � 53, which is much larger than that in
existing experiments. Unfortunately, air at ambient temperature requires very large
setups (large values of h) if the increase in Ra is to be attained without sacrificing the
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Boussinesq approximation. The largest tank operating with air at present is ‘the barrel
of Ilmeneau’, where the top cooling plate is made of aluminium while the bottom hot
plate is a 5 cm thick concrete layer (Du Puits et al. 2007). According to the authors,
owing to the relatively small heat diffusivity of the concrete, the boundary condition
of the heating plate is of nearly constant heat flux. Their setup is thus nominally
similar to the present numerical arrangement and their heat transfer data show good
agreement with the present findings. This agreement, however, should be taken with
caution on several counts. The aspect ratio of ‘the barrel of Ilmeneau’ varies from
Γ = 1.13 up to Γ = 11.3 and, as noted by the authors, their data in the high end of
the Ra range might be subject to non-Boussinesq effects. In addition, the heat flux
through the sidewall is countered by an active heating system and the heat radiation
between the horizontal plates is taken into account by a model while the heat losses
to the ground are estimated by a single-point measurement (Du Puits et al. 2007).

A better verification of the present findings might be possible if ‘the barrel of
Ilmeneau’ is provided with a better heating plate, changing the situation to a constant-
temperature boundary condition within 1 K (R. Du Puits, private communication).
Another interesting possibility, already attempted by J. J. Niemela (private com-
munication), is as follows. The lower plate was fabricated from oxygen-free copper
‘sponge’ of about 60% porosity with nearly micron-sized pores. The plate retained
the same high value of thermal conductivity as copper, but its heat capacity increased
by several orders of magnitude because of the entrained fluid – thus providing
an effectively constant-temperature boundary condition (high values of thermal
conductivity and heat capacity). These unpublished experiments were designed to
test the effect of boundary condition on the onset of convection. They detected no
measurable difference (unlike the calculations of Sparrow et al. 1964), but no heat
transport measurements at high Ra have been made with this arrangement.

We thank Dr Joe Niemela for several useful discussions. The simulation for constant
temperature conditions were performed at the computing centre CASPUR and the
assistance of Drs F. Massaioli and G. Amati is gratefully acknowledged. Part of the
simulations for constant heat flux were made at the computing centre CINECA with
a grant account, for which we thank Dr G. Erbacci.
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